Primal-Dual Path-Following Algorithms for Determinant Maximization Problems With Linear Matrix Inequalities
نویسنده
چکیده
Primal-dual path-following algorithms are considered for determinant maximization problem (maxdet-problem). These algorithms apply Newton's method to a primal-dual central path equation similar to that in semideenite programming (SDP) to obtain a Newton system which is then symmetrized to avoid nonsymmetric search direction. Computational aspects of the algorithms are discussed, including Mehrotra-type predictor-corrector variants. Focusing on three diierent symmetrizations, which leads to what are known as the AHO, H..K..M and NT directions in SDP, numerical results for various classes of maxdet-problem are given. The computational results show that the proposed algorithms are eecient, robust and accurate.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملComplexity of the primal-dual path-following algorithms for the weighted determinant maximization problems with linear matrix inequalities in the narrow neighbourhood
The problem of maximising the determinant of a matrix subject to linear matrix inequalities (maxdet-problem) is an extension of the semidefinite programming (SDP) [1]. problem. It includes the problem of analytic centring as well. Vandenberghe et. al in [13] give many applications of the maxdet-problem, in computational geometry, statistics, information and communication theory, etc. See also [...
متن کاملAn extension of the standard polynomial-time primal-dual path-following algorithm to the weighted determinant maximization problem with semidefinite constraints
The problem of maximizing the sum of linear functional and several weighted logarithmic determinant (logdet) functions under semidefinite constraints is a generalization of the semidefinite programming (SDP) and has a number of applications in statistics and datamining, and other areas of informatics and mathematical sciences. In this paper, we extend the framework of standard primal-dual path-...
متن کاملSymmetric Primal-dual Path following Algorithms for Semideenite Programming
In this paper a symmetric primal-dual transformation for positive semideenite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual transformation is a well known fact. Based on this symmetric primal-dual transformation we derive Newt...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems in which we minimize linear function over the intersection of an affine linear manifold with the Cartesian product of circular cones. It has very recently been discovered that, unlike what has previously been believed, circular programming is a special case of symmetric programming, where it lies between second-order ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 14 شماره
صفحات -
تاریخ انتشار 1999